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Simple Frequency Estimation
via Exponential Samples

Steven Kay, Fellow, IEEE

Abstract-A method for determining the frequency of a real angle of the sinusoid or O(t) = 27rFot. For sample times
sinusoid is proposed. Based on exponential sampling of the t. = 2 n-M-1, the angle samples become
waveform, the approach requires virtually no computation. It can
be easily implemented in digital hardware. 0, = 27rFotn

= 27rfOFMAx2n-M-l
I. DESCRIPTION OF METHOD = 27rfo2n-1 (4)

ASSUME we observe the real continuous-time sinusoid
.tj s(t) = Asin(21rFot), where A > 0 and that we wish to for n = 1,2,.-.. Consider n = i so that 01 = 27rfo. If

determine the frequency Fo, which satisfies 0 < F0 < FMAX. b, = 0, then from (3), 0 < fo < 1/2. The upper limit
The sinusoidal phase is assumed to be zero. Let FMAX = 2 M of 1/2 is assumed not to be possible due to assumption

for some integer M. To measure the frequency to an accuracy of a terminating representation since 1/2 is represented as
0.1000.... Hence, b, = 0 if and only if 0 < 01 < 7r. Inof N, we use
addition, if b, = 1, 1/2 < fo < 1 so that b, = 1 if and only

N if 7r < 01 < 27r. Next, consider n = 2 so that 02 = 47rfo.

FA0 = FMAX E bn2- (1) Using (3)
n=1

where 02 = 47r 2 + E bn2-

b, = 0 if s(t n) > 0 n=2_ /

=1 if s(t,) <0 =-27rb +2-7r b2+ bn2_n+l.

and tn, 2 n-M-1. If s(tn) = 0 for some n = no, then n=3/

We can omit the 27rb, term since it equates to 0 or 27r, and
(n -n1 ) thus, it does not affect the sine function. Let a = b2 /2 +

-fO FAX bn2-' + 2-n (2) EO bn-n+1FP0 := FMAX b-t n=3 + and note that if b2 = 0,0 _ a < 1/2 and if
\ n=1 b2 = 1, 1/2 < a < 1. Hence

which effectively terminates the expansion. 0 < 02 < 7r if and only if b2 = 0

II. RATIONALE 02 <90 <27r if and only if b2 = 1.

Define the normalized frequency as fo = (FO/FMAX) SO By continuing the same argument, we can show that
that 0 < fo < 1. We use a binary expansion for fo as 0 < On < -7r b,:= 0

00(5fo E b2- 3 7r <_ On < 27r -t* bn L 1 (5)
fCo=ZEbn2-'• (3)-

n=1 Excepting the case when On = 0 or 7r, this translates into

where bn = 0 or 1. s(tn) > 0 #> b, = 0
For uniqueness, it is assumed that the dyadic rationals, S(tn) < 0 <* bn = 1.

that is, numbers of the form k/2L for L an integer and
k = 0, 1, ..- , 2L - 1, are represented by terminating expan- If s(tn0 ) = 0 for some n = no, then Ono = 7rk for k an
sions. Hence, the number 3/4 is represented as 0.11000... integer. Thus, from (4)
as opposed to 0.10111 ... . With (3), determination of fo
is equivalent to determination of {bn}. Now, consider the

Manuscript received December 8, 1993; approved February 10, 1994. or fo - k/2no, which is a dyadic rational. It then follows that
This work was supported by grant AFOSR 93-1-0006. The associate editor
coordinating the review of this letter and approving it for publication was On = 27rfo2n- 1

Prof. V. 3. Matthews. k
The author is with Department of Electrical Engineering, University of = 27r-2@ -1

Rhode Island, Kingston, RI 02881.

IEEE Log Number 9402223. = 7rk2n-no (6)
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which is a multiple of 27r for n > no, and hence, bn = 0 for M-6. N=8, F0-59

n > no based on (5). If no is the sample for which s(tn) is 30

first equal to zero, then k must be odd. Otherwise, k = 21, - No Phase Error

and from (6) 25s .... a-5 degrees

20.. a-5 degreesOn = 7rl2n-no+l a -10~ldogrees

20,

so that s(tn,-.) = 0, contradicting the assumption of the first
zero. In summary, if no is the first sample term for which 1,
s(tn) = 0, then we should choose bn, = 1 since On. = kir R s1
for k odd, and bn = 0 for n > no since O, will be a multiple
of 27r. 10 .

As an example, assume FMAX = 64 Hz and Fo = 60 Hz
so that M = 6. i

For N = 4 bit accuracy, we sample at s ".

tn 2 n = 1,2,3,4

4. 91 0 12 14 16 18 20 22
T4 2 6SNR In dB

Then, s(tn) = A sin (27r(60)tn) so that s(t,) < 0, s(t 2) < Fig. 1. MSE for a frequency of Fo 59 Hz.
0, s(t3) < 0, S(t 4) = 0. Applying (2) with no = 4, we have

Fo = 64(2-' + 22 + 2-3 + 2-a) = 60 Hz. and
N

III. PRACTICAL CONSIDERATIONS E.(Po) = FMAX E pn.()2-.
n=1

A. NoiselPhase Errors Since, 4, U[-a, a], we finally have that

Assume that the sinusoidal phase is not zero so that s(t) = 1 -2 N
A sin (27rFot++)). We model 4 as a random variable uniformly MSE(Fo) = I- / FrIAXEP,(0))(1 - p,.(0)))2 2 ' do
distributed over [-a, a] or 4 -U U[-a, a]. In addition, due to 2a _a n=1
observation noise, we observe the samples ,a ( N 2

x(tn) = Asin(27rFotn + 4) + w[n] + Ia =FMAX SP.(¢)2- -- Fo) d

where w[n] is modeled as white Gaussian noise with variance (7)
0r2 and is independent of 4. The mean squared error (MSE) where
of Fo as given by (1) is now found. We need not consider (2)
since X(t•,) : 0 with probability one. The mean squared error p.(M) = Q( sin.(27rFotn + +) (8)
of F0 = FMAX n=l bn2- is

As an example, the MSE is shown in Fig. I for a frequency
MSE(Fo) = E[(-to - Fo)2] of F0 = 59 Hz. The maximum frequency was chosen to be

= E5E 1,¢[(Po - Fo) 2] FMAX = 64 Hz (M = 6) and N = 8 bits of resolution were

= EkE.[(FPo _ Fo) 2 ] selected.

where E5 denotes the expected value with respect to the PDF B. Observation Interval
of 4, and E,, denotes the expectation with respect to the w[n] Since the sample times are exponential, the length of
samples. However time over which we must observe x(t) can become large.

Eo[(Po - Fo) 2] = var.(fto) + (E.(Fo) - Fo) 2 . The observation interval for N bits is T = 2 N-M-1 =

2N- 1 /FMAx A given relative bias error due to bit truncation
Since b,. will be 1 when x(tn) < 0 and 0 otherwise, we have or IE(Fo) - FoI/Fo = E may be obtained if we choose N
that Pr[b,. = 1] = Pr [x(t,) < 0] = Q((A/u) sin (27rFotn + bits where

4)) & p,.(O) and therefore, conditioned on 4,bn is 2-NFMAX
Bernoulli with probability pn(0). Q(u) is defined as Q(u) = Fo =

f:O (1/V/2)e-(1/2)t2 dt. Hence
N (This ignores the bias due to noise.) Since 2T = 2N/FMIAX,

var.(Po) = FM2AX E var.(b,.)2-2 we have 1
,n=1 T = . (9)
N 27eFo

= FMAX Epn(4)(1 - p.(O))2 2 n The observation time is determined by the accuracy desired
n=1 and the minimum frequency to be estimated.
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IV. DISCUSSION this it may be better to truncate the expansion at n = no if

The approach described is easily implemented in digital IX(tno )l < 6, where 6 is a small number.
hardware using a clock running at a rate of FMAX cycles/s and Last, the estimation method may be used to measure thehardwar cousinger a cockbruing thae expofentiAlscyleties/s ad frequency of other periodic waveforms such as square waves,
a binary counter to obtain the exponential sample times. The for example. The only requirement is that we should be able
samples are taken when the counter contains 1, 2, 4, 8, ... to determine from the waveform if O takes on values as per
To ensure a sinusoidal phase of zero, the counter is initialized (5). In addition, the speed of a motor or rate of revolution of
when x(t) crosses zero in an upwards direction. From (2), any constant rotation object may be ascertained as described.
the probability of x(tn) = 0 and, therefore, of terminating
the expansion is zero in the presence of noise. Thus, if fo is ACKNOWLEDGMENT

a dyadic rational, whose binary expansion should terminate, The author wishes to thank S. Talwalkar for providing the
noise effects may cause the expansion to continue. To avoid computer results.
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Abstract

A dynamic programming algorithm and a suboptimal but computation-

ally efficient method for estimation of a chaotic signal in white Gaussian

noise are proposed. The nonlinear map is assumed known so that only the

initial condition need be estimated. Computer simulations confirm that both

approaches produces efficient estimates at high signal-to-noise ratios.

1 Problem Statement

The problem is to estimate a chaotic signal s[n] that is embedded in white Gaussian

noise w[n] of variance o,2. Hence, the data model is

x[n]=s[n]+w[n] n=0,1,...,N-1, (1)

where s[n] is a deterministic signal generated according to the nonlinear and non-

invertible map

s[n] =f(s[n- 1]). (2)

EDICS # 2.7.5, 3.6.1
*This work was supported by the Air Force Office of Scientific Research under contract AFOSR

93-1-0006.



The map f: [0, 1] -- [0, 1] is assumed known and to be unimodal. As a result, it

has two preimages. Typical examples of such maps are the logistic and tent maps

[1]. We furthermore assume that the initial condition s[0] is unknown so that

the problem of estimation of s[n] reduces to that of estimation of only the initial

condition. Once this estimate is available the entire signal may be estimated, at

least in theory, using (2). In practice, because of the extreme sensitivity to errors,

(2) cannot be used to propagate signals in the forward direction. Instead, we rely on

the parameterization described in [2] whereby the sequence {s[0], s[1],...', s[N- 1]}

is replaced by {po,p,. ... ,PN-2,s[N - 1]}. The sequence {p,,}4_0 is the itinerary,

or

• [0 if 0_<s[n]<c
Pn={ I

1 1 if c<_s[n]<1

where c is the value of x for which f(x) is maximum. Hence, the itinerary can be

used to determine the appropriate preimages of a chaotic signal when propagated

backward. As an example, for the logistic map or f(x) = 4 x (1 - x), the function

is
1 + (2p- 1) V1-x

and consists of the preimages fo' (x) = • and fT1 (x) - . Thus, we2 2

can write

s 1] = -•(s[n])

2 Halving Method

Before discussing the dynamic programming (DP) approach to the maximum like-

lihood estimate (MLE) evaluation, we describe a suboptimal but computationally

efficient approach. In the process we prove that for a large class of unimodal maps

the initial condition can be determined from the itinerary of the map. The ar-

gument relies on certain topological conjugacy relations. Now assume that f is

2



conjugate to the tent map T or

T~x) 2x 0 < X <
1 <x<l

2(1 -x) < X_
2- -

so that, there exists an invertible transformation h : [0, 1] [0, 1] such that

f = ho To h-' (3)

Then, we may write s[n] as

s[n] = f (s[0])

= hoTn o h-l(s[0])

since fn = ho Tn o h-' and fn is the n fold composition of f. Let s'[0] = h- (s[0])

so that,

T (s'[0]) = h-'(s[n])

Now use the substitution property or Tn = T o Sn-' [3], where S is the Bernoulli

shift

S(x)=2xmodl 0<x<l

to yield

T o Sn-l(s'[0]) = h-'(s[n])

If s'[0] is represented in the binary format s'[0] = E=l bk2-k = O.blb 2 ... , (where

we use a terminating expansion for the dyadic rationals), we have that

S= 0..b..b.

Hence, it follows that

T( O.b,,b,+l ... )=h-'(s[n])

The effect of the tent map is to shift left by one bit if the argument is 0 < x < 1/2

and shift left and complement (due to 1 - x factor) if 1/2 < x < 1. As a result,

h-'(s[n]) = O.b,+lb,+2 ... if b,, = 0,

= 0.b,+lb,+2 ... if b, = 1,

3



where the overbar denotes the complement bit. This says that

o if 0 < h-'(s[n])< and b-n=

1 if < h-'(s[n]) < 1 and b, = 0b,+l --

1 if 0 < h-'(s[n]) < and b, = 1

0 if < h-'(s[n]) < 1 and b, = 1

If we now let pn be the itinerary of h-'(s[n]) or pn = 0 if 0 < h-1 (s[n]) < 1/2

and pn = 1 if 1/2 < h-1(s[n]) < 1, we have finally that,

bn+ 1 = b, ( p, 5

where D denotes the exclusive OR operation. The recursion begins with b, = po.

To summarize, we can determine the initial condition of a map that satisfies the

conjugacy relation of (3) as

s[0] = h ( bn2-nl)

where b, = b,- e P,•- 1 , (b, = po) and p,n is the itinerary of h-'(s[n]). It is

interesting to note that in practice we will have {po,pl,...,PN-1 } based on the

itinerary of the data set {s[0], ... , s[N - 1]}, assuming no noise. Hence, we

will have

ý[O] = h bn2-n , (4)

so that the estimate of h-'(s[0]) will be in error by at most 1/ 2g. We will call

the estimation of s[0] by (4) the halving method since as each itinerary value is

obtained, the interval in which s'[0] must reside is halved.

As an example, for the chaotic logistic map f(x) = 4x(1 - x) it is known

that h(x) = sin 2 (Mx) and h-1(x) = larccos(l - 2x). Since h-1 maps [0,1/2) onto

[0, 1/2) and [1/2, 1) onto [1/2, 1) the itineraries of h-'(s[n]) and s[n] are the same.

Thus, the halving method estimates s[0] as

S[0] = sin 2 z E 2n) (5)

where b, = b,_ 1 E,_ and fin is the itinerary of x[n]. The performance for

this example will be discussed in Section 4. Note that, if we consider s[n] as the

4



initial iterate, then it depends only on {p,,Pn+l,...}. Furthermore, s[n] may be

determined directly from this itinerary in a similar fashion as per (4). Or since

the itinerary {pn,pn+1,.. .} can be obtained for any s[n] there is a one-to-one

correspondence between s[0] and {Po,p,... ,PN-2, s[N - 1]} as already noted in

[2].

3 Dynamical Programming

The MLE for the initial condition is obtained as the value of s[O] that minimizes
j = E_ x[n] - s[n] where s[n] = f'(s[O]). A straightforward minimization

n=O

requires one to compute fn(s[O]), which-leads to computational errors. Rather,

we employ a DP approach, which does not require a forward propagation. The

method to be described applies to any unimodal map. In particular, for the tent

map, which is piece-wise linear, an analytical solution may be found as in [2]. Let
k

Jk (s[kl) = (x[n] - n]2
n=O

and also
s4n]=ff-f .k (s[k]) (6)

I pn ,Pn--1,'",Pk--1

be the inverse function composition for n < k - 1. This is defined as

s[k- 1] = f-1 (s[k])

s[k -2] = f-,'(s[k-1])

- f-2 (f7 kL1 (s [k]))
f•_1 (s[k- ])

-1 - 1,A-

- f~i_2,pl(s[k])

etc.

Now, let

Ik(s[k]) min Jk(s[k])
{Po,.P1.Pk--1}

so that the desired minimization is effected when k = N - 1 and Ik(s[N - 1]) is

minimized over s[N - 1]. Thus,
k

Ik(s[k]) - min E (x[n]- s[n]) 2

{P0OPI.....Pk-1} n=O

5



k-1 i

= min min (x[n] - s[n])2 + (x[k] - s[k])2
Pk-1 {OtPo .... ,Pk-2} n= 0

= min min [Jk-i(s[k - 1]) + (x[k] - s[k])2]PA;-1 [Po ,Pl , ... ,sPh-2 }

Sain min [J-I (fp-1 (s[k])) + (x[k] - s[k])2]
Pk-1 {PO,Pl 9...,tPh-2} j

Since s[k] does not depend on {po,pi,.... pk-1} but only on {pk,.... IPN-2,5s[N -

1]}, as per (6) we have,

Ik(s[k]) = mink.._i (fPL,(sk)) + (x[k]- .4k])2 , (7)
Pk-1

as our DP algorithm. The recursion is computed as a function of s[k] for k -

1,2, ... , N - 1 with the initialization

Io(D[0]) = (x[O] - s[O])2

After obtaining IN-,(s[N - 1]), we find the s[N - 1] that minimizes it and denote

the minimizing value as .[N- 1]. We then backtrack to find {o, A .. -, N-2}. In

doing so, the signal sequence is estimated as
-[•1] -=

f[n_ - [n])

for n = N - 1, N - 2, ... , 1. Note also that this approach avoids the exponential

increase in computational errors since the propagation is along the stable manifold.

4 Computer Simulations Results

It has been shown [4] that the MLE of the initial condition of a one-dimensional

chaotic signal is an inconsistent estimator. Hence, the usual asymptotic distribu-

tion as N -+ co does not hold. However, as the SNR becomes large, the asymptotic

distribution is valid. In particular, the asymptotic probability density function

(PDF) of .[0] is

[o0] , M (4o0], -'(s[o])) , (8)

where I(s[O]) is the Fisher information (and hence, -'(s[O]) is the Cramer-Rao

lower bound (CRLB) for an unbiased estimator) and is found to be
Or2

I-i(SIo])- = -1, (9)
6M=0

6



where
1 ifm=0

(S•] ] if-1 (10)
(=0

and f' denotes the derivative of f [5].

We compare the performance of an MLE using a fine grid search (by minimizing
N-1

J = E (x[n] - s[n])2 directly) and that of the two algorithms previously described
n=0

to the theoretical performance of (8). In particular, the bias and variance are

determined using Monte Carlo simulations. Note that the CRLB for a logistic

map can be shown to be

a 2 5[1]

1-'(s[0])=Zv=0N-1 4s[n + 1]

We used a data record length of N = 10 and an initial condition of s[0] = 0.61.

Some implementation details for the three methods are now discussed. For the

grid search MLE we first use a coarse search by dividing up the [0, 1] interval

into 1000 points. Then we search over the interval [.ý,[0] - 0.001, .,[0] + 0.0011

using 1000 points where .•[0] is the coarsely obtained point of the minimum. The

implementation of the halving method departs slightly from (5). This is because

the use of (5) may produce a maximum error of 1/ 2N - 0.001, even in the absence

of noise. The CRLB, because of its exponential decrease with N, can be much lower

than this error. To improve the performance we first obtain the coarse estimate

,[]= sin -( b,,2 T  + 2

where the addition of the term 2-(N+I) has the effect of choosing the midpoint
of the interval E b,2-3, E b,2- - . Then, a fine search (100 points)

(n=1 n=1

over the interval (.,[0] - 2 -N , .,[0] + 2 -N) is made by minimizing J, as in the

MLE implementation. Note that the length is twice that of the coarsely obtained

interval. The fine search is repeated twice over successively smaller intervals of 100

points. The DP implementation of the MLE uses 500 points for the state s[k]. For

the search over s[N - 1] we use an initial quantization of 500 points to locate a

coarse estimate of . [N - 1]. We then choose a finer grid for [N- 1] centered about

7



the previous estimate as well as the same estimates {U30, p,... , PN-2} obtained

previously.

The results are shown in Figure 1. Above the threshold of about 40dB all

three methods produce unbiased estimates that achieve the CRLB. (The bias,

although not shown, was negligible above the threshold). This is in accordance

with the theoretical results of [4]. Of the three methods the halving approach is

computationally the simplest. If enough data points are available, the fine search

employed for the halving method may be eliminated. This is because the error will

be at most 1/ 2 N and so the estimate, which although not attaining the CRLB,

will be accurate enough for most practical purposes.

Acknowledgments. The authors wish to thank S. Talwalkar for performing the

computer simulations described in this paper.
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